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Analytical and numerical aspects of the electromagnetic 
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The dynamic effects of an alternating magnetic field on containers of conducting fluid 
are investigated in two special cases: (i) an infinitely long circular cylinder in a uni- 
form magnetic field normal to the generators; (ii) a truncated circular cylinder in a 
uniform magnetic field parallel to the axis. Neglecting the motion effects in Max- 
well’s equations, the problem is conveniently decoupled into electromagnetic and 
dynamic parts. Using either analytical or numerical solutions of the electromagnetic 
equations, the electromagnetic forces are calculated and introduced in the motion 
equations. In the first case, asymptotic solutions of the Navier-Stokes equations 
valid for high frequencies are calculated and compared with numerical solutions 
obtained for the same geometry. The second case has been studied numerically, and 
the solutions are presented and interpreted. 

1. Introduction 
There have been many recent developments in the field of electromagnetic stirring 

by alternating magnetic fields in liquid metal furnaces or crucibles. The main reason 
is that in most metallurgical devices using induction processes electric currents are 
set up in the bath, and it is necessary to cope with electromagnetic forces and their 
effects on the liquid metal. Knowledge of these forces is a necessary first step for the 
conception and optimization of such devices. Obviously, rotating or travelling 
magnetic field systems provide more efficient stirring than do alternating current 
systems. However, it  is well-known by engineers that alternating field systems pro- 
vide the most efficient designs for heating and melting. Therefore, the question is: 
how can we control the stirring in such systems? Note that stirring may have both 
useful and adverse effects. On the one hand, it is a means of improving the homo- 
geneity of the bath, but on the other hand, stirring may lead to a rapid erosion of the 
refractory walls. 

So far, mainly numerical approaches have been undertaken in order to solve this 
prob1em.t We mention here the works of Szekely & Nakanishi (1975), and Tarapore 
& Evans (1976) who considered a crucible in a coil and computed the motions taking 
account of turbulence. The computations were performed for special cases of metal- 
lurgical and practical interest. They noticed that the motion is organized in cellular 
patterns whose size depends on the location of the induction coil. However, no 
explanation of that phenomenon has been given. Few analytical works have been 

t The reader is referred to Moreau’s survey (1980) for fiirtlier details. 
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carried out. Sneyd (1971) treated the two-dimensional case of a cylinder in a uniform 
alternating magnetic field (case I below). However, he only considered very weak 
field strengths the resulting motion being dominated by viscosity. Sneyd (1979) also 
gave a method of calculating the electromagnetic force distribution in a closed 
container in the limit of high frequencies. Tir (1975) attempted a global approach by 
calculating energy budgets in order to determine the efficiency of the stirring. 

The above studies were carried out for special configurations, and there exists as 
yet little attempt to explain the detailed mechanism of electromagnetic stirring by 
A.C. fields. A deeper understanding of the action of the Lorentz forces on the motion 
is still required. It is of particular interest to determine the precise role of some basic 
parameters such as the frequencyf, the strength of the magnetic field Bo (or the induc- 
tion currents) and the viscosity v on the cellular-type flow configuration and on the 
order of magnitude of the velocities. Therefore, using both analytical and numerical 
tools, we have studied two special configurations : 

Case I .  An infinite circular cylinder in a uniform transverse magnetic field. 
Case 11. A truncated circular cylinder in a uniform axial magnetic field. 
In  this study, some non-dimensional numbers will be employed to represent the 

above basic parameters. First, the frequency will be characterized by the magnetic 
Reynolds number R, based upon the frequency as follows: 

R, = puwL2, (1.1) 

where ,u is the magnetic permeability of the medium, (r the electrical conductivity, 
L a typical length scale of the crucible and w the pulsation defined by 

0 = 27Tf. (1.2) 

The importance of the electromagnetic forces with respect to the viscosity is given by 
an interaction parameter R defined by 

R = u0 L/v,  (1.3) 

uo = ~ o l ( P P o P ,  (1.4) 

where uo is the Alfvdn velocity based on the applied field strength, 

where po is the density of the fluid. The containers will be assumed to be closed, i.e. 
without free surface. In  the analytical study it will be assumed that 

(but displacement current will be neglected throughout). The actual magnetic 
Reynolds number R, based upon the velocity, namely 

R,, = ,UUUL, (1.6) 

where u is a typical velocity scale of the motion, will be assumed to be much smaller 
than R,. Hence the electric currents induced by the motion of the fluid particles 
across the lines of forces, i.e. o-u x B will be negligible compared with the electric 
currents induced by the pulsation of the applied magnetic field. This assumption 
allows us to consider separately the electromagnetic problem and the dynamic one 
as in the related rotating field problem, Moffatt (1965). As for the motion, the flow 
will be assumed to be laminar. In  practical situations, the motion is likely to be 
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turbulent. Nevertheless, we suppose that the analysis may be applied to  the well- 
organized large scale structures of the flow, the viscosity being then interpreted as an 
eddy viscosity. Temperature effects and consequently buoyancy forces wil l  be neg- 
lected. This is justified in appendix B, where estimates are made of the order of 
magnitude of temperature gradients, and buoyancy forces are compared to  the 
Lorentz forces in a standard practical situation. Moreover, owhg to the large value 
of the frequency of the applied field, the inertial response of the fluid to the periodic 
part of the Lorentz force will be neglected (see Moreau 1980). 

In  $ 2, the general equations of the problem are set up. Special forms of both Maxwell 
and Navier-Stokes equations are derived within the high-frequency limit. The caae 
of the infinite circular cylinder is investigated in $3. An asymptotic theory valid for 
R, 9 1 is compared with numerical calculations carried out in the same geometry for 
various values of R,. In  $4 we give some numerical solutions of the Navier-Stokes 
equations in the case of a truncated circular cylinder. Finally, in 55 some concluding 
remarks are made about the role and the importance of turbulence. 

2. The general equations 
2.1. The electronucgnetic aspects 

I n  this section we shall first give the general form of the Maxwell equations and the 
expression for the electromagnetic forces. Then their special form in the high frequency 
limit will be derived. Most of the results given below are well known and have been 
established in detail by Khaletzky (1976) and Sneyd (1971, 1979). However, to make 
the paper self-constrained, the main results will be recalled briefly. Attention will be 
focused especially on cases I and 11. 

(a) The general case. Under the assumption R, < R, ($ 1), the electromagnetic and 
dynamic problems are decoupled. The first step is therefore to find the distribution of 
the magnetic field By the electric currents j induced throughout the body of con- 
ducting fluid 9 by an external alternating magnetic field and to calculate the j x B 
force. 

The magnetic field distribution is governed by the Maxwell's equations. Assuming 
that the problem is either two-dimensional (case I) or axisymmetric (case 11), these 
reduce to a single equation governing the one-component vector potential A'j,, 
namely 

(2.1) 
aA' V x (V x A'i3) = -rub= i3, 

where 1, has to be identified either with is in the two-dimensional case in cylindrical 
co-ordinates (r ,  8, z )  (z being the axis of the cylinder) or with io in an axisymmetric 
geometry (2, r ,  O), z being the symmetry axis. If the applied magnetic field is a 
sinusoidal function of time, then A' can be sought in the form 

A' = W{Aeht} with 2 = IAle@. (2.2) 

The vector potential is described by its phase g5 and its amplitude IA I which are both 
functions of the co-ordinates. The magnetic field B is given by 

B = V x (A'i,). (2.3) 
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FIGURE 1. Numerical solutions of Maxwell equations. The geometry consists of a truncated 
circular cylinder in a uniform magnetic field (case 11). The computed magnetic lines of forces are 
drawn for various values of R,,, in a half-meridian plane. 

As for the boundary conditions, the magnetic field must be continuous across the 
boundary. Thus, from (2.3) we require the derivative of A’ to be continuous across the 
boundary of 9. The medium outside 9 will be assumed to be insulating as well as the 
wall of the crucible. The magnetic field is assumed to be uniform at infinity, and so 
A’ behaves as follows: 

A’ N r sin 8 in the two-dimensional geometry, 

A’ N r in the axisymmetric geometry. 
(2.4) I 

Within the crucible the electric currents are calculated from Ohm’s law in the form 

aA’ 
j = -u- i,. 

at 

Thus, the electromagnetic forces may be obtained by using (2.2), (2.3)’ (2.5), namely 

j x B  = ( ~ ~ l A ( s i n ( ~ t + $ ) i , ) x V x  (IAIcos(ot+$)i,). (2.6) 

Actually, under our assumptions (cf. $1) we are only interested in the mean value of 
the Lorentz forces over a period (Moreau 1980). Hence, the driving forces are defined 
bs  

where T = 2 1 ~ 1 ~ .  It is noteworthy that the curl of (j x B) (cf. (2.7)), which is re- 
sponsible for the motion, vanishes when the amplitude IAl is constant. This occurs 
for example in an axisymmetric geometry for an infinitely long circular cylinder in a 
uniform magnetic field parallel to the axis. In  this case, magnetic flux variations are 
responsible for any motion in accordance with Lenz’s laws. (A similar result holds in 
the rotating field problem - see Moffatt 1980.) 

In case I, the analytical solution has been obtained by Sneyd (1971). As for case 11, 
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FIQURE .2. The computed value of the vector potential at the boundary is p--ltted along tLe wall 
for various values of ,Rw; A' is normalized by Boa. I, R, = 30; 2, R, = 100; 3, R, = 800. 

equation (2.1) with the boundary condition (2.4) has been solved numerically, using 
a finite-difference scheme. The magnetic lines of force are shown in figure 1 for various 
values of R, (i.e. various frequencies) in a half meridian plane. We also give in figure 2 
the distribution of the non-dimensional vector potential along the wall (the vector 
potential scale is Boa, 6 being the skin depth defined in (2.8) below). 

(b) The asymptotic case. Inside 9 we may define a length scale b corresponding to 
the thickness of the electromagnetic layer, namely 

b = @ b 4 2 ) - k  
In the high frequency limit, i.e. 

6 b/L = (2/R,)* 4 1, (2.9) 

AI= A@)+€A(l)+ .... (2.10) 

it is possible to calculate explicitly the vector potential. Formally, A^ may be expanded 
in power series of E ,  aa follows: 

Moreover, using Sneyd's proceriure (1979), it is convenient to express (2.1) in a curvi- 
linear frame with the boundary of 9 taken as a geodesic line. Let x and y be a system 
of curvilinear co-ordinates respectively along the boundary of 9 and normal to 9 
(cf. figure 3 and appendix A where the definition of the local frame as well as the 
expression of the operator V x V x ( ) are given). In terms of the dimensionless variables 

X* = x/L, y* = y/S, B, = BIB,, A* = A^/Bo6, (2.11) 
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0 0  B r 

FIGURE 3. Sketch of the local frame defined from the boundary. 

at the lowest-order equation (2.1) reduces to 

p&0)/&J2 = 2&0), (2.12) 

where the asterisks have been dropped for convenience. Integrating (2.12) with the 
boundary condition 

A(o)-+o as y++co, 

and taking the real part yields the classical (‘skin-effect’) solution 

A’(o) = A(O)(x) e--Y cos (wt - y + #,(x)). (2.13) 

A(O)(x), #o(z) respectively represent the vector potential and the phase along the 
boundary of 9. Outside 9 the magnetic field may be calculated by using the analogy 
between the magnetic field lines and the streamlines of the irrotational flow of an 
inviscid fluid past 9 (Moffatt 1978). Continuity of the magnetic field across the 
boundary of 9 then determines A(O)(x) and #o(x).  

Consider for example case I. Using the above analogy outside 9 the dimensionless 
magnetic field component along the boundary, i.e. Be is 

Be = -2sinOcoswt. (2.14) 

Continuity of the magnetic field yields 

Be = (8A’(o)/8~)u=o. (2.15) 

Thus, from (2.13) and (2.14), (2.15) serves to determine the functions A(o), #o, namely 

= 2tsin8, #o = -n/4.  (2.16) 

In  case 11, there are two major difficulties in seeking analytic solutions. First 
(by analogy with potential flow theory), the magnetic field becomes infinite near the 
corner of the cylinder (when R,-+co). This result is confirmed numerically below. 
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FIQURE 4. Sketch of the distribution of the rotational part of the electromagnetic forces, 
(a) case I, (a) cam 11. 

Figure 2 shows that the vector potential distribution along the wall reaches a maximum 
value in the corner region and that maximum increases as R,,, increclses. Secondly, it 
must be observed that equation (2.12) is no longer valid near the corner region since 
the curvature of the boundary becomes infinite. Consequently, the z derivatives are 
no longer negligible with respect to the y derivatives (cf. condition (A 8) of appendix 
A). This is illustrated in figure 1 where, for large R,, the magnetic field lines cross the 
domain in the corner region. 

In  the high frequency limit the expression for the electromagnetic forces is sim- 
plified. Combining (2.7) and (2.13), the Lorentz forces take the following particular 
form in dimensional variables 

where 
(2.17) 

An equivalent formula was obtained by Sneyd (1979). Let ua decompose the Lorentz 
forces into a gradient part VCg and a rotational part F as follows 

(J x B) = V@+F. (2.18) 

The potential Cg and F may be calculated explicitly from (2.17), (2.18), namely 

In  the non-dimensional variables (2.1 1) the expression for F becomes: 

I4 

(2.20) 

FLM I02 
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where the asterisks have been omitted for convenience. It is noticeable that the 
electromagnetic forces are irrotational at the lowest order, since from (2.19) the 
y component of V@ is greater than F. More precisely, 

(2.21) 

Using (2.16) and the computed distribution of the vector potential (cf. figure 2) in 
the expression (2.19) for F, one may have a qualitative description of the Lorentz 
forces in the electromagnetic layer in both cases I and 11. This is sketched in figure 4. 
In  a quarter of a meridian plane F has two zeros in case I and three zeros in case 11. 

2.2. The motion equations 

The electromagnetic force distribution being known, it is natural to consider the 
motion equations. The general equations of steady motion are 

p(u.V)u+V@+@) = F+pVV2U+pg, ( 2 . 2 2 ~ )  

v.u = 0, (2.22b) 

where u is the velocity field, p is the pressure, and g is the acceleration due to gravity. 
In  ( 2 . 2 2 ~ )  the electromagnetic forces have been split using the decomposition (2.18). 

First, let us examine qualitatively the temperature effects and compare the 
buoyancy forces to the Lorentz forces. The equation of state of the fluid is assumed 
to be 

P = Po(1- a(T -To)), (2.23) 

where T denotes the temperature and a the coefficient of thermal expansion. Any 
temperature variation AT leads to a density variation Ap such that 

Ap = - upo AT. (2.24) 

Using the Boussinesq approximation the buoyancy force is Apg. Let us consider the 
ratio 

I FI /IAPg I * (2.25) 

(2.25) may be evaluated by using the expression (2.20) for F, hence 

(2.26) 

From (2.26) the importance of buoyancy forces depends strongly on the magnitude 
of the characteristic temperature differences in the pool. If we consider for example a 
practical case, e.g. a five ton aluminium furnace (see appendix B for further details) 
it is found that the order of magnitude of the typical temperature differences due 
only to electromagnetic stirring is 

AT = 3.4.10-2 "C. (2.27) 

OC-' we obtain Using the numerical values given in appendix B with a = 0.5.  
an estimate of the ratio (2.26): 

lFl/lApgl = 7 .  lo3 B 1.  (2.28) 
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The above estimate shows that, although Joule dissipation is important, buoyancy is 
probably a secondary effect in the dynamics of the stirring. Therefore, the investiga- 
tion will be focused on the electromagnetic effects, and density gradients will be 
neglected. 

Let us now derive a non-dimensional form of the equations (2.22). Setting 

U* = u / u ~ ,  V ,  = LV, B, = B/Bo, (2.29) 

where uo is the Alfv6n speed defined in (1.4), the system (2.22) may be rewritten in 
the following form: 

u.VU+VP = F+ R-lV%, R = u,L/v, (2.30) 

v .u  = 0, (2.31) 

where the asterisk has been omitted for convenience. P denotes the total pressure. 
Physically, equation (2.30) expresses a balance between inertia, the Lorentz forces 
and viscosity. 

In  the high frequency limit, it must be pointed out that F contains implicitly 
another length scale, i.e. the skin depth 6. The driving force is localized in a wall layer, 
and it is natural to assume that 6 is the proper length scale of variation of the velocity 
field transverse to the wall in the penetration layer. This leads to important sim- 
plifications of (2.30) in the electromagnetic layer. Indeed, using the local co-ordinates 
(2, y )  defined in $2 and denoting by (u, v) the dimensionless velocity components 
respectively along iz, 1,, the continuity equation (2.31) becomes 

a a 
-((h,u)+- (h,v) = 0, 
ax aY 

(2.32) 

h, being defined in appendix A. From (2.32) it is clear that if Bis the right length scale 
in the y direction, i.e. 

a/@ = O(L/6) and a/ax = O(i) ,  (2.33) 
then 

v = O(B/L)u. (2.34) 

Since from (2.19) the rotational part of the Lorentz forces has a single component 
along iz at the lowest order, (2.33), (2.34) imply that the classical boundary layer 
approximations may be used in the layer. The Navier-Stokes equations (2.30) then 
reduce to a single projection along the x axis. With these approximations, it is con- 
venient to rescale y and v as follows: 

5 3 2 ,  y+y/&,  u+u, v+€v. (2.35) 

Combining (2.20), (2.30) and (2.35) the dimensionless equations of motion in the layer 
reduce to: 

the continuity equation (2.32) being unchanged. The boundary conditions are 

u = v = O  on y = O ,  

u+U(x)  as y++oo, 
(2.37) 

14-2 
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where U(x) denotes the slip velocity of the flow in the interior region at the wall. 
There appears in (2.36) a new parameter 

R, = Re2 = 2R/R,, 

representing an effective interaction parameter of the flow. In  the interior region the 
motion is governed by equations (2.30), (2.31) where we set F = 0. 

3. Case I. The infinite circular cylinder 
The aim of this section is to investigate an idealized situation, i.e. the circular 

cylinder in a uniform transverse magnetic field. Because of the various symmetries 
of the problem, the domain may be restricted to a quarter of a cylinder. The general 
motion equations are (2.30), and the corresponding boundary conditions are: 

y = + = o ,  8 = 0 , - ,  4 
+ = - = O ,  a+ r = 1 ,  

ar 

where 5 denotes the single vertical vorticity component of the flow, and + is the 
corresponding stream function. Both an asymptotic theory in the high frequency 
limit and numerical computations have been carried out. 

3.1. The asymptotic theory 
When E is small, a perturbation analysis may be used to study the motion. We assume 
that the domain may be split into various regions as follows: (i) the interior region 
re€erred to as I ;  (ii) the electromagnetic layer referred to as 11; (iii) the viscous bound- 
ary layers referred to  as I11 (if viscosity is small). Two cases are distinguished 
according to the value of the parameters R, and e. 

(a)  Large viscosity limit. The simplest case corresponding to a purely viscous motion 
has been studied by Sneyd (1971). Inertia is assumed to be negligible in the whole 
domain. In  the interior region 5 satisfies 

v2y = 0, (3.2) 

and the stream function + of the flow is related to y by 

VZ+ = -y. (3.3) 

In  the electromagnetic layer the inertial terms are also neglected, and (2.36) reduces 
to 

The expression for A@) for a circular cylinder is given by (2.16) with 8 = 5. In (3.4) 
the pressure gradient is actually of order of 19 with respect to the terms of the right 
hand side and is neglected in the asymptotic theory. This may be readily justified by 
considering the order of magnitude of the pressure in the interior region. The solutions 
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satisfying (3.2), (3.3), (3.4) and the boundary conditions (3.1), (2.37) have the fol- 
lowing form: 

5 = gRar2sin 28 (here 8 E x), ( 3 . 5 ~ )  

(3.5b) 

u = 3(1-e-2qsin22. (3.5c) 
4 

The maximum velocity is obtained with y = +co and x = 1. in (3.5c), namely 

u(tn, 00) = tR,. (3.6) 

The streamline pattern consists of four eddies in each of the four quadrants in the 
circular cross-section of the cylinder. It must be observed that the Reynolds number 
Re of the flow in the interior region is 

(3.7) Re = uo R, a/v = RR, = Raea, 

a being the radius of the cylinder. Thus, solution (3.7) is valid only when 

Re = Raez 1. 

(b)  Small Viscosity limit. In  the other asymptotic situation, the interior region is 
assumed to be inviscid. The flow pattern may be split into three main zones: the 
interior region I ,  the electromagnetic layer I1 and the wall viscous layer I11 of depth 
8,. Various cases occur according to the value of the ratio 8,/8 which from (2.36) is 
defined by 

where u is a characteristic velocity of the pool (a similar procedure waa carried out by 
Sneyd 1971). In  the limit 8,/8 % 1, equation (3.4) is still valid in the region 11, and 
(3.6) yields the characteristic velocity of the problem. Then, from (3.6), (3.8) the 
expression of 8, is 

S,/a = O(Rs)-l. 

In  the small viscosity limit, we require for consistency that Re B 1. The transition 
between the two flow rt5gimes corresponding to 8,/8 2 1 depends on the value of R,. 
In  the analysis given here, we shall not distinguish between the regions I1 and 111. 

Consider first the region I ,  and assume that the flow consists of a single vortex 
lying wholly in I. This assumption is both supported by the results of the transient 
problem (Sneyd 1971) and verified a posteriori by the numerical calculations. In  I, 
the Lorentz forces are identically zero, and viscosity is negligible. For a streamline 
lying in I ,  Batchelor’s (1956) theorem holds, and vorticity is constant, namely 

(3.9) 

8,/8 = O(UR,)--+, ( 3 4  

5 = 5, (a constant). 

In  I, the motion is governed by the following equations and boundary conditions: 

VZ@ = - 5 0 ,  

@ = O  on r = l V O  and 
(3.10) 
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The solution of (3.10) may be sought by expanding c0 and @ in Fourier series as 
follows~ 

W 

C0 = cnsin 2n0, 

@ = +,(r)sin2n0, 

n = l  

J co 

n=l  

where the Fourier coefficients 5, are defined by 

I (3.11) 

0 (neven), 
- 4&/nn (n odd). 

Cn = -(l-cosnn) 250 = 
nn 

The solution of (3.10) is: 

(3.12) 

(3.13) 

It must be observed that the modulus of @ is still undetermined. From (3.13) the 
tangential velocity component at  the wall, i.e. U(0) is: 

(3.14) 

The expression for U(0)  is necessary to match the interior region with the electro- 
magnetic layer. Furthermore, U(0)  yields the pressure gradient in (2.36). Indeed, 
(2.36), (2.37) yield 

8P dU - = - U- (here x = 0). 
8X ax 

(3.15) 

Regarding the electromagnetic layer, a first approach consists of looking for 

@ = fl(y) sin 2x + f2(y) sin 4x + . . . . (3.16) 

Inserting (3.16) into (2.36), and comparing terms, we obtain a system of simultaneous 
ordinary differential equations for the functions f!, f2, . . . . Such a system is very com- 
plicated. Therefore, in order to have some clues to the complete solution, we have 
retained only the first two harmonics. The equations governing fi, f 2  are then 

solutions of (2.36) in Fourier series as follows: 

1 1 fT-f1f; = U2+-f:, 2f2f;-f;f;-f1fi = &U2+e-av+-fy. (3.17) 
R, R, 

The boundary conditions on f,, f2 are: 

fl = f; = f 2  = f b  = 0 on y = 0, f; = Ul, f; = U2 at y = +co, (3.18) 

where U,, U2 denote the Fourier coefficients of U ( z ) .  The values of U,, U2 are given by 
(3.14). Actually, from (3.12), (3.14) U2 is zero, and U, is still undetermined. The 
system (3.17), (3.18) has been solved numerically by using a Runge-Kutta type 
scheme and a shooting method from the origin (y = 0). The value of U, wm found 
numerically as an eigenvalue of the system. The results are shown in figures 5, 9 
where f ;, f; are plotted versus y and the value of U, is plotted versus R, (dashed line). 
We observe in figure 9 that there exist two flow rdgimes according to the value of R, 
which from (3.8) is involved in the transition €I,,/& 3 1. The first branch (e.g. R, 5 1) 
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FIQTJRE 6. Theoretical tangential velooity profiles in the skin; fi, fi corresponding to the two 
first harmonics are normalized by u,. 

probably corresponds to the continuation of the viscous solution where U, = &Rd 
and V, = 0, i = 2, 3.... As for the second one (Rd > 1) we have not been able to deter- 
mine the exact asymptotic behaviour of U, for large &, but it is found numerically 
that 

U, cc R$ with a N 0.3. 

From figure 5 it must be observed that, aa Rd increases, fi behaves like a wall jet 
confined to a wall sublayer. Concerning the first harmonic, f; is almost constant in 
the skin depth then changes rapidly near the wall. Such a behaviour is confirmed by 
an analytical solution of (3.17) with Rd = 00. Indeed, the solution of (3.17) satisfying 
the following boundary conditions: 

fi(0) = 0, fi(c~) = V,, fi(m) = constant, fi(c0) = 0, 
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is 
fi = U,, fi = e -2~ /2U,  y. (3.19) 

To interpret the above results, let us integrate (2.36) over x from 0 to in. Applying 
the boundary conditions (3.1) yields: 

(3.20) 

Moreover, let us assume that in the limit R, > 1 there exists a wall viscous sublayer 
as the above solutions suggest. It is clear from considering the boundary conditions 
in the electromagnetic layer, that from (3.20) the v-component of the flow cannot be 
zero at  the wall (unless au/@ becomes infinite). We are led to admit the existence of 
a flux, whose magnitude is at least O(uo6) across the sublayer. This is in agreement 
with the singular behaviour of fi near y = 0 in (3.19). Such a flux is also consistent 
with the integral expression of Batchelor’s theorem obtained by integrating (2.30) 
along a closed streamline (C) (Sneyd 1971), namely 

(3.21) 

According to (3.21) any streamline (C) which crosses the penetration layer must also 
cross a viscous layer in the laminar steady-state approximation. 

As for the interior flow, it must be observed that its magnitude is determined by 
the dynamics of the wall layers (I1 and 111) via the parameter U,. The fact that U, is 
an eigenvalue may be explained by the need of a sufficient pressure gradient in the 
layers 11, 111. The pressure gradient ensures that the boundary conditions on the 
tangential velocity component for 8 = 0, +n are satisfied, i.e. 

N O ,  Y> = U ( h ,  Y) = 0. 

We shall end this section with a short analysis of the singular zones along 
8 = 0, in. The solution in the interior region I cannot satisfy the boundary con- 
ditions (3.1) on C;. Therefore, there exist two free boundary layers in which the vor- 
ticity component varies from go to 0 along 8 = 0, in. Let us consider for example the 
case 8 = 0 and adopt the new local variables 4, 6, C; along the local co-ordinates T, q 
such that: 

6, being the boundary layer thickness. Let 0 be the velocity outside the boundary 
layer. The expression of 0 is given by (3.13), namely 

rl = 0(47/a), 

The boundary layer thickness is 
&,/a = O(Ou,a/v)-+. 

The jump in velocity is of the order of S,C;,uo/a (.,/a being the vorticity scale). The 
smallness of this variation of velocity across the boundary layer implies that the 
classical boundary layer equations may be linearized by setting (Batchelor 1967): 

u = O(r)  + O(a,./a). 
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0 X 1 

FIGURE 6. Streamline pattern in case I corresponding to the numerical solutions of Navier- 
Stokes equations for R, = 60, and (a) R = 50, (a) R = 600. The domain is restricted to a 
quarter of a cylinder, and the values of @ can be deduced from the velocity profiles in figure 7. 
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FIQWRE 7. Streamline pattern in case I corresponding to the numerical solutions of Navier- 
Stokee equations for R, = 200, and (a) R = 200, (b)  R = 2000. 
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FIGTJRE 8. Tangential velocity profiles u&, fn) in case I: -, computed profiles for (a) R, = 50 
and (b) R, = 200. - - - -, profiles given by the asymptotic theory for R, = 5 and 20. 

The tendency for back flow to develop in the boundary layer is much weaker at a free 
surface than at a rigid wall (Batchelor 1967). Therefore, we shall not pay attention to 
those layers. 

3.2. The numerical solutions 
It is of interest to compare the asymptotic analysis with numerical work carried out 
in the same geometry. The Navier-Stokes equations (2.30), (2.31) have been solved 
numerically in a quarter of a circular cylinder in a transverse uniform magnetic field. 
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R ,  
FIGURE 9. Maximum computed velocity urn, in the pool in case I (solid lines) and first coefficient 
of Fourier expansion U ,  of the flow in the interior region (dashed line), given by the asymptotic 
theory; (5) is obtained from the viscous solution, and ( b )  corresponds to the cwe R, 2 1; the 
velocities are normalized by uo. *, R,,, = 50; 0 ,  R, = 200. 

The asymptotic expression (2.20) of the Lorentz forces (valid for high frequencies) 
has been used in the computations. The steady state solutions are obtained by com- 
puting the single vorticity component [ and the streamfunction $ (for a complete 
discussion see Khaletzky 1976). The boundary conditions on @ and [are given by (3.1). 
A finite difference scheme coupled with an integration of the equations in the mesh is 
used. The number of points is 28 x 29. The convective terms are discretized by using 
upstream differences. This method ensures the stability of the numerical scheme, but 
on the other hand it introduces a numerical diffusion which limits the validity of the 
solutions for large Reynolds numbers. The investigation may be split into two parts: 
(a) the analysis of the flow pattern, and (b) the analysis of the flow rdgime, i.e. the 
variation of the typical velocity with respect to the interaction parameter R,. 

(a) Flow pattern. The results are shown in figures 6, 7, 8. The flow pattern consists 
of one vortex in a quarter of a cylinder. In  accordance with the initial assumptions of 
$3.1, two main regions may be distinguished: (i) the interior region; (ii) the wall 
boundary layers. In  the interior region, the flow configuration and the shape of the 
tangential velocity profile are insensitive to the value of R when R $ 1 (figures 6 , 7 , 8 ) .  
The flow consists of closed streamlines in the central region. The corresponding 
analytical velocity profiles obtained for R, = 5 and 20 are plotted in figures 7(a ,  b) 
(dashed lines). The agreement between the computed and analytical curves is fairly 
good except near the origin. This is possibly an effect of the side boundary layers. As 
for the wall layers, one observes an increase of the tangential velocity near the wall 
as R, increases (figure 8). 

(b) Flow rdqime. In  figure 9 the maximum computed value of the velocity in the 
pool, urnax, has been plotted versus R, on logarithmic scales. For Rb 5 1, the curves 
are almost parallel to the one-power law in accordance with (3.4). However, for 
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I 
R = 30 

FIGURE 10. Streamline pattern in a half meridian plane of a truncated circular cylinder (caae 11) 
corresponding to the numerical solutions of Nrtvier-Stokes equations for R, = 30; the values of 
$ can be deduced from the velocity profiles in figure 12. 

R, =- 1, we observe a change of the slope of the various curves in an analogous way 
to the asymptotic curve U,(R,). We have not been able to determine the aaymptotic 
behaviour of Umax(R8), since for large R,  it is likely that numerical diffusion over- 
comes viscous diffusion. However, it is noteworthy that, when R, - 1, uo (cf. (1.4)) 
is a good estimate of the velocity in the pool (cf. figure 9). 

4. Case II. The truncated circular cylinder 
Only numerical work has been undertaken in this cme. An asymptotic theory 

might be developed in principle as in $3.1. However, the geometry, and particularly 
the presence of the corners, introduce some difficulties, especially when using a local 
frame. The numerical procedure is similar to that of $3.2. The electromagnetic force 
distribution has been computed (cf. $ 2.1) neglecting the electric currents induced by 
the motion, and then introduced in the motion equations. Owing to the symmetry of 
the force distribution, the domain may be restricted to a half meridian plane. The 
number of grid points is 19x 19. The boundary conditions are analogous to (3.1). 
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Z =  

FIGURE 11. Streamline pattern in a half meridian plane of a truncated circular cylinder (case 11) ; 
R, = 100. 

A 

U r =  1 
R = 800 R = 2000 

FIGURE 12. Streamline pattern in a half meridian plane of a truncated circular cylinder (cam 11); 
R, = 800. 
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R = 800 

FIOURE 13. Computed vertical velocity profile8 u, (r, z = 0.7) in cme 11, (a) R, = 30, 
(6)  R, = 100, (c) R, = 800; the velocities are normalized by q,. ’ 
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1 10 100 

FIQURE 14. Maximum computed velocity u,, in the pool (case 11) ; the velocities are normalized 
by ug. 0,  R, = 30; *, R, = 100; *, R, = 800. 

Again, the investigation may be split into the analysis of the flow configuration and 
the flow r6gime. 
(a) Flow pattern. The flow configurations consist of two or three vortices in a half 

meridian plane according to the values of R, and R. More precisely, it must be noticed 
that for a fixed R, (figures 10, 11, 12) the magnetic field strength which is represented 
by R, no longer has any influence on the motion pattern whenever R, is greater than 
unity or Re large enough. This is also shown in figure 13 where the vertical velocity 
component is plotted versus the radius of the pool for R, = 30, 100, 800 and various 
values of R. In that figure, for Rd > 1 and for fixed R,, the shape of the velocity 
profiles is similar in the interior region in all cases. Moreover, this figure shows 
(especially figure 13c) an increase of the flow in the electromagnetic layer. In the 
high-frequency limit and with R, 2 1 that result may be explained by the existence 
of two distinct regions (cf. $3.1): (i) an inviscid central region where 

lJr = a constant, (4.1) 

according to  Batchelor’s theorem; and (ii) an electromagnetic layer which may con- 
tain a wall viscous sublayer. In  the interior region the flow pattern is fixed by (4.1) 
up to a constant and does not change when R, 2 1. The existence of a second vortex 
(cf. figures 11, 12), whose size is roughly proportional to the skin depth, may be a 
consequence of the special distribution of the vector potential along the wall (see 
figure 2). Indeed, the vector potential reaches a maximum value near the corner, and 
according to (2.20) the driving forces are positive on the side wall and negative on 
the upper one (in the local co-ordinates) as it is shown in figure 4. 

(b) Flow rdgime. Viscous effects are also involved in the determination of the proper 
velocity scale of the various flow rhgimes. The maximum computed value of the 
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velocity urnax has been plotted versus R, in figure 14. We also observe two flow 
regimes according to R, 2 1. For R, 5 1, the slopes of the curves are almost unity in 
accordance with what should be expected from the continuation of the viscous 
solution in the electromagnetic layer. However, for R, > 1 the slopes of the various 
curves are less than unity. For very large values of R,, urn, tends to a constant. In  
that case, the asymptotic behaviour of u,,, is not significant because of numerical 
diffusion. 

5. Discussion 
In  summary, the basic parameters of the problem are the frequency, the magnetic 

field strength and the viscosity which are involved via the non-dimensional numbers 
R,, R and R,  respectively. Dealing with the motion, we have demonstrated that when 
RE is large, the field strength no longer has an influence on the flow pattern but only 
on the magnitude of the velocity field. In  this case, a transition r6gime is found 
according to R, 2 1. The proper velocity scale is either UoR, when R, 5 1 or u 0 R 3  
when R, 2 1. 

The above treated is based on the assumption of laminar flow. However the Rey- 
nolds numbers are generally large, and the flow in most practical cams will be tur- 
bulent. Nevertheless, various experiments (Cremer 1979) indicate that in this case 
there exist well-organized mean (i.e. time-averaged) structures. Though one has to be 
cautious in interpreting these experiments because of thermal convection which 
cannot be rigorously dissociated from electromagnetic stirring, this mean motion is 
probably driven by the electromagnetic forces. Therefore, we claim that most of the 
results of this paper may be applied to  the mean constituent of the flow, at least in a 
heuristic way. Of course, molecular viscosity must then be replaced by an effective 
viscosity (eddy viscosity). For very large Reynolds numbers, the viscous dissipation 
comes mainly from turbulent small-scale fluctuations, and, in analogy with turbulent 
boundary layers on rough walls, there might exist a third flow rdgime where the 
mean velocities are independent of the viscosity. 

The author is indebted to Prof. R. Moreau for having suggested this problem and 
for helpful comments, and to Prof. H. K. Moffatt for suggestions which led to im- 
provements in the paper. 

Appendix A. Definition of the local co-ordinates (2, y) associated with a 
given geodesic curve 

Consider a given curve (e.g. the boundary of the pool, cf. figure 1) and its equations 
in a parametric representation. Any point on the curve is represented by its cylindrical 
co-ordinates (ro(x), zo(x) )  ((Xo, Yo) in the two-dimensional case) which are both func- 
tion of the parameter x, namely 

r o ( 4  = R ( 4 ,  zo(4 = f34, (A 1) 

where z denotes the curvilinear abscissa defined from B taken as the origin (figure 1). 
Let us consider any point M whose local co-ordinates are ( x , 8 ,  y) y being the distance 
of M from the wall ((5, y, z )  in two-dimensions). (x, 8, y) is a system of orthogonal 
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curvilinear co-ordinates, and if dl is the distance between two neighbouring points 
we have : 

where in the usual notation h,, h,, h3 are defined by 

d12 = h?dxz+ hid@+ hfdy2, (A 2 )  

(i) in the axisymmetric geometry: 

(ii) in the two-dimensional case: 

hl = 1 +~R"(x)/S'(X), h, = ha = 1. 

Thus, the differential operator 9, defined by 

takes the following form 
9(.) = v x v x ((.) ie), 

An interesting particular case occurs when 

a/ax = o(I/L) ,  a/% = o ( i p ) ,  

where 6 4 L, L being a typical length of the boundary. Indeed, we may set 

h, = 1 + 0(6/L),  h, = R(x)  + O(6/L). (A 7) 

R"(x)/S'(x) = O(L/d). (A 8 )  

The expressions (A 7) are valid except when the curvature of the boundary becomes 
large, namely 

Appendix B. Estimates of the temperature gradients in a crucible 
In this appendix we shall estimate the characteristic temperature difference AT 

in a standard practical case: a five-ton aluminium furnace. The characteristic para- 
meters of the furnace are: 

radius, L = 0.6 m; 
height, H = 0.8 m; 
typical magnetic field, B, = 2.10-2T; 

frequency, f = 50 Hz. 

The physical properties of aluminium a t  T = 700 "C are: 

electrical conductivity, u = &lo6 mho m-l; 
specific heat, C, = 103 J kg-l "C-l; 
thermal conductivity, h = lo2 J/ms-l "C-l; 
density, po = 2-37.109 kg m-3. 

The energy equation which governs the temperature distribution T is: 

aT -+u.VT = xV2T+(j2)/p,Cp~, 
at 
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where j denotes the induced electrical current density, (j2)/c is the mean Joule 
dissipation in the bath per unit volume (averaged over one period), u is the velocity 
field and 

Using the above numerical values, let us estimate the orders of magnitude of each 
term of (B 1) in order to  estimate AT. Let us adopt uo as the proper velocity scale, so 
that AT will be a measure of the homogeneity of the pool due to the electromagnetic 
stirring. The orders of magnitude are: 

x = h/pocp = 0.42.10-4 MKS. 

In  (B 4) we have used (2.3), (2.11). Indeed, since the magnetic field component B, 
parallel to the wall is such that 

the order of magnitude of the electrical current density is 

B, = W O ) ,  

1 = W O / P 4 .  

The role of diffusion with respect to convection by the velocity field is measured by 
the following ratio 

where 

Using the numerical values yields 

Q/@ = xL/uJa = R,/2P,, 

p, = uo L/x. 

(B 5 )  

R, = 710, uo = 0.36 m/s, 8/L = 0.053, @/a = 0.065. 

The above result indicates that convection by the motion dominates over thermal 
molecular diffusion. Thus, the proper temperature difference may be obtained by 
equating the convection term @ to the Joule heat source 0, namely 

so that 
u0 AT/L = U: w/2CP, 

AT = u ~ w L / ~ C ,  = 3.4.104 "C. 

Though the above estimate (B 6) is formal, it gives a clue aa to the good homogeneity 
of the bath due to the stirring (including turbulent effects). Note that these con- 
clusions are confirmed by recent experiments performed in a mercury pool by Cremer 
(1979) who found that the maximum temperature difference in the bath was indeed 
at most 1 "C. 
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